UNIFAC with the above interaction parameters.

The experimental tie-line data were also correlated by using the UNIQUAC (3) and NRTL (4) models. The parameters (u_{ij}) $-u_{ij}$) and $(u_{ij} - u_{ij})$ corresponding to the residual excess Gibbs energy contribution of the UNIQUAC equations and the interaction parameters $(g_{ij} - g_{ij})$ and $(g_{ij} - g_{ij})$ for the NRTL equations were estimated by using the method described by Sørensen et al. (7). The objective function used to estimate the model parameters was

$$F = \sum_{k} (\min) \sum_{j} \sum_{i} (x_{ijk} - \hat{x}_{ijk})^{2}$$
(2)

where the summation indices are i = 1, 2 phases, j = 1, 2, ...,N components, and k = 1, 2, ..., M tie lines. Here the x_{ijk} represent the experimental mole fractions and \hat{x}_{μ} the calculated ones, and min denotes the minimum value of the summation. For the NRTL model, the nonrandomness parameter α_{ii} was set at a value of 0.2.

The UNIQUAC and NRTL parameters, obtained by this procedure, are reported in Table III, together with the average absolute deviations between the experimental and calculated mole fractions.

The experimental measurements on this system showed a small two-phase region at 298 K. According to these results only toluene-isooctane mixtures with less than about 47 mol % of toluene could be separated by the use of diethylene glycol methyl ether. Figure 3 shows the selectivity of this solvent as a function of the solvent-free mole fraction of toluene in the isooctane-rich phase. The solvent selectivity was defined in term of mole fractions as

$$S = \frac{[x(2)^{*}/x(3)^{*}]_{\text{DM-rich phase}}}{[x(2)^{*}/x(3)^{*}]_{\text{isocctane-rich phase}}}$$
(3)

where the indices 2 and 3 represent toluene and isooctane. respectively, and • indicates equilibrium values. The S values drop guite rapidly toward a value of 1 at low toluene concentrations. The above results and discussion indicate a low solvent capability of the diethylene glycol methyl ether for the separation of toluene-isooctane mixtures.

Acknowledgment

Sincere thanks to all staff at Kemiteknik for their kind hospitality and assistance and to P. Rasmussen for reading the manuscript.

Registry No. DM, 111-77-3; toluene, 108-88-3; isooctane, 540-84-1.

Literature Cited

- (1) Gani, R.; Brignole, E. A. Fluid Phase Equilib. 1983, 13, 331. (2) Fredenslund, Aa.; Jones, R. L.; Prausnitz, J. M. AIChE J. 1975, 21,
- 1086.
- Abrams, D. S.; Prausnitz, J. M. AIChE J. 1975, 21, 116.
 Renon, H.; Prausnitz, J. M. AIChE J. 1968, 14, 135.
 Alders, L. "Liquid-Liquid Extraction", 2nd ed.; Elsevier: Amsterdam, 1959.
- Magnussen, T.; Rasmussen, P.; Fredenslund, Aa. Ind. Eng. Chem. (6)
- Process Des. Dev. 1981, 20, 331. Sørensen, J. M.; Magnussen, T.; Rasmussen, P.; Fredenslund, Aa. Fluid Phase Equilib. 1979, 3, 47. (7)

Received for review April, 2, 1985. Accepted July 5, 1985. The experimental measurements were performed at Institute for Kemiteknik, Technical University of Denmark, Lyngby, Denmark.

Density Study of $Mg(NO_3)_2 - H_2O - HNO_3$ Solutions at Different Temperatures

Robert T. Jubin, ** Jack L. Marley, * and Robert M. Counce*

Fuel Recycle Division and Analytical Chemistry Division, Oak Ridge National Laboratory, § Oak Ridge, Tennessee 37831

Densities for the Mg(NO₃)₂-HNO₃-H₂O system have been measured experimentally; more than 140 measurements were made covering the ranges 30-70 wt % Mg(NO₃)₂ and 0-40 wt % HNO₃ at temperatures of 50-145 °C. A mathematical model for the observed density relationships has been developed.

Introduction

This study was undertaken to provide density data for Mg-(NO₃)₂-HNO₃-H₂O solutions for the conversion of mass to volumetric flow rates for process simulation and design purposes. This activity is part of an effort to develope and demonstrate a simple process for the extractive distillation of nitric acid (1, 2). The specific objectives of the study were to obtain density data for solutions containing 30-70 wt % Mg(NO3)2 and 0-15 wt % HNO₃ over the temperature range 50-145 °C. A mathematical model of the density data as a function of the weight percent of Mg(NO₃)₂ and HNO₃ and temperature was developed and is presented in this publication.

Experimental Section

The experimental procedure is described more completely elsewhere (3).

Reagents. Reagent-grade chemicals and demineralized water were used in the preparation of samples and in subsequent analyses. The magnesium nitrate used in these studies was Mallinckrodt Mg(NO3)2.6H2O flake. For some tests with high Mg(NO₃)₂ concentrations, the original hexahydrate was dehydrated to Mg(NO₃)₂·(2.1-2.2)H₂O.

Density Measurements. The dilatometers used in this study were designed to contain \sim 35 mL and were fabricated of Pyrex glass for the study. Calibration was performed by observing and recording the level of the meniscus of water in the graduated regions when equilibrated at 30, 50, 70, and 90 °C.

Density Measurements. Reagents were weighed directly into 500-mL beakers for the preparation of solutions with magnesium nitrate concentrations of ≤55 wt %. Accurate

^{*} Address for all correspondence: Oak Ridge National Laboratory, Post Office Box X, Building 7601, Mall Stop B, Oak Ridge, TN 37831.

[†]Fuel Recycle Division. [‡]Analytical Chemistry Division. [§]Operated by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy.

Table I. Density of Solutions with 30-35 wt % Mg(NO₃)₂

Table III.	Density of	Solutions	with	50 - 55	wt %	$Mg(NO_3)_2$
	**** 07.					

	· wt %				
	Mg(NO ₃) ₂	HNO ₃	temp, °C	av density, g/cm ³	
-	30.86	0.0	50	1.252	
			70	1.239	
			90	1.224	
	30.89	5.15	50	1.286	
			70	1.272	
			90	1.257	
	30.42	10.01	50	1.318	
			70	1.303	
			90	1.288	
	30.46	14.94	50	1.353	
			70	1.336	
			90	1.318	
	29.58	25.79	50	1.414	
			70	1.393	
			90	1.377	
	29.98	34.51	50	а	
			70	1.451	
			90	1.430	
	33.86	40.02	70	1.522	
			90	1.501	
	35.70	0.0	70	1.284	
			90	1.269	
			105	1.259	
	35.43	5.64	70	1.322	
			90	1.311	
			105	1.297	
	33.52	11.64	70	1.344	
			90	1.326	
			105	1.315	
	34.81	16.86	70	1.396	
			90	1.378	
			105	1.365	

^a Solution freezes.

Table II. Density of Solutions with 40-45 wt % $Mg(NO_3)_2$

wt %				
Mg(NO ₃) ₂	HNO ₃	temp, °C	av density, g/cm ³	
40.02	0.0	50	1.351	
		70	1.340	
		90	1.325	
		100	1.318	
40.37	0.0	50	1.359	
		70	1.346	
		90	1.334	
		100	1.329	
39.92	4.81	50	1.388	
		70	1.377	
		90	1.360	
		100	1.354	
40.09	9.79	50	1.422	
		70	1.414	
		90	1.403	
		100	1.393	
39.33	15.46	60	1.454	
		75	1.438	
		90	1.425	
		100	1.411	
45.63	0.0	75	1.398	
		90	1.386	
		105	1.376	
		120	1.366	
45.10	4.66	70	1.431	
		90	1.415	
		105	1.404	
		120	1.392	
44.93	10.03	90	1.456	
		105	1.443	
		120	1.429	
43.85	15.47	90	1.481	
		105	1.468	
		120	1.454	
46.21	28.82	90	1.585	
		105	1.569	
		120	1.555	

WL 70				
Mg(NO ₃) ₂	HNO ₃	temp, °C	av density, g/cm ³	
51.49	0.0	90	1.467	
		105	1.458	
		120	1.449	
50.88	4.25	90	1.483	
		105	1.475	
		120	1.461	
50.85	9.08	90	1.525	
		105	1.513	
		120	1.499	
50.25	13.94	, 90	1.541	
		105	1.527	
		120	1.510	
		130	1.502	
54.17	0.0	90	1.504	
		105	1.495	
		120	1.482	
		130	1.473	
53.13	4.04	90	1.514	
		105	1.502	
		120	1.491	
		130	1.479	
		135	1.470	
54.23	6.02	90	1.541	
		105	1.529	
		120	1.516	
54.86	9.35	90	1.571	
		105	1.558	
		120	1.546	
		130	1.537	
52.24	14.57	90	1.566	
		105	1.552	
		120	1.537	
		130	1.526	
55.40	21.06	90	1.641	
		105	1.626	
		120	1.616	

weighing and transfer of reagents were not necessary for this preparation since final concentrations could only be targeted for these reasons: (1) when the magnesium nitrate, nitric acid, and water are being heated and stirred during the dissolution, some acid and water are lost by evaporation, and (2) when transferring and heating mixtures containing substoichiometric Mg(NO₃)₂·XH₂O, (MgX), water is adsorbed while the MgX is exposed to the laboratory atmosphere.

The Mg(NO₃)₂·6H₂O flake, 70% HNO₃ (sp gr 1.42), and water required to make 190 g of solution were heated and stirred simultaneously. During the same time, three dilatometers were heated to 90 °C in the oven, allowed to cool for 10 min, weighed, and then returned to the oven. When the salt dissolved and the solution was clear (temperature usually 90-100 °C), the dilatometers were removed from the oven, filled while hot to the graduated region, and weighed. The top closure was then sealed in place. The loaded dilatometers were placed in the oven set at the lower temperature of the range of interest (e.g., the 50 wt % Mg(NO₃)₂ series, to be heated at 90, 105, 120, and 130 °C, was placed in the oven at 90 °C). After heating at the required temperature for 1.5 h, the liquid level was observed and recorded; then the temperature was raised to the next level, with 1.5 h again allowed for equilibration. At the end of the heating cycle, the dilatometers were removed from the oven and allowed to cool sufficiently so that boiling or gassing would not occur when opened. The hot solutions were immediately transferred to volumetric flasks (200 or 250 mL), allowed to cool to room temperature, and then diluted with water. Aliquots were analyzed for magnesium by a titration with EDTA; nitric acid was determined by a thermometric titration with sodium hydroxide (4).

To prepare solutions having $Mg(NO_3)_2$ concentrations of >55 wt %, use of the substoichiometric MgX was required. Con-

Table IV. Density of Solutions with 60-65 wt % Mg(NO₈)₂

n+ 01_

	Mg(NO ₃) ₂	HNO ₃	temp, °C	av density, g/cm ³	
-	59.82	0.0	90	1.552	
			105	1.540	
			120	1.527	
			135	1.516	
			145	1.506	
	59.82	0.0	100	1.558	
			115	1.546	
			130	1.534	
	57.51	4.38	90	1.571	
			105	1.560	
			120	1.546	
			135	1.534	
	58.90	8.88	90	1.615	
			105	1.603	
			120	1.589	
			130	1.578	
	61.00	13.84	90	1.668	
			105	1.656	
			120	1.641	
	65.17	0.0	90	1.627	
			105	1.617	
			120	1.605	
			135	1.592	
			145	1.583	
	65.97	5.70	90	1.680	
			105	1.668	
			120	1.657	
			135	1.644	
	65.60	10.44	90	1.700	
			105	1.693	
			120	1.676	

Table V. Density of Solutions with 70 wt % Mg(NO₃)₂

...+ 07

WL 70				
Mg(NO ₃) ₂	HNO ₃	temp, °C	av density, g/cm ³	
68.47	0.0	90	1.667	
		105	1.658	
		120	1.646	
		135	1.634	
		145	1.622	
69.41	4.86	90	1.703	
		105	1.693	
		120	1.681	
		135	1.669	
68.79	7.97	120	1.702	
		130	1.688	
	wt # Mg(NO ₃) ₂ 68.47 69.41 68.79	$ \begin{array}{c ccc} $	$\begin{tabular}{ c c c c c c } \hline \hline Wt & 70 \\ \hline \hline Mg(NO_3)_2 & HNO_3 & temp, \ ^{\circ}C \\ \hline 68.47 & 0.0 & 90 \\ & 105 \\ 120 \\ 135 \\ 69.41 & 4.86 & 90 \\ & 105 \\ 120 \\ 105 \\ 120 \\ 135 \\ 68.79 & 7.97 & 120 \\ 130 \\ \hline \end{tabular}$	

tainers with accurately weighed $Mg(NO_3)_2$ ·6H₂Q flake were loaded into the vacuum oven set at 41 °C. The trap for removal of water was immersed in liquid nitrogen, and the system was evacuated. After 5 days of the described treatment, the oven and contents were brought to atmospheric pressure by backfilling with nitrogen. The containers were weighed to determine water loss. From the weight loss determination, the apparent formula of the MgX and the percent Mg(NO₃)₂ were calculated. Then the calculated amount of MgX, 70% HNO₃ (sp gr 1.42), and water were mixed to prepare 200 g of solution. The reagents were dissolved while heating to 90–100 °C with stirring; then the reagents were transferred to hot dilatometers, equilibrated, and analyzed as described above.

Results

The experimental data are grouped according to magnesium nitrate content in Tables I–V. The recommended equation for the density of the $Mg(NO_3)_2$ - HNO_3 - H_2O system is

D = 0.9280 + 0.01185M + 0.006215H - 0.0007866T

where D = solution density (g/cm³), M = wt % Mg(NO₃)₂, H = wt % HNO₃, and T = temperature (°C). This equation has a standard deviation of 0.006 125 20 g/cm³ based on 144 experimental points covering the range of 30–70 wt % Mg(NO₃)₂ and 0–40 wt % HNO₃ over the temperature range 50–145 °C. Complete information on the model selection and development is presented in ref 3.

Registry No. Mg(NO₃)₂, 10377-60-3; HNO₃, 7697-37-2.

Literature Cited

- (1) Counce, R. M.; Groenier, W. S.; Holland, W. D.; Jubin, R. T.; North, E. D.; Thompson, Jr., L. E.; Hebble, T. L. "The Extractive Distillation of Nitric Acid Using the Two-Pot Concept", ORNL/TM-7982, December 1982. Available from NTIS, the National Technical Information Service, United States Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.
- Jubin, R. T.; Holland, W. D.; Counce, R. M. "TWOPOT: A Computer Model of the Two-Pot Extractive Distillation Concept for Nitric Acid", ORNL/TM-9241, February 1985. Available from NTIS.
 Jubin, R. T.; Marley, J. L.; Counce, R. M. "Density Study of the Ternary
- (3) Jubin, R. T.; Marley, J. L.; Counce, R. M. "Density Study of the Ternary Mixture Mg NO₃-H₂O-HNO₃", ORNL/TM-9586, June 1985. Available from NTIS.
- (4) "Oak Ridge Master Analytical Manual"; Method 1214770, Rev. July 1, 1980; Method 122032, Rev. September 1979, Oak Ridge National Laboratory, Oak Ridge, TN. Available from NTIS.

Received for review May 30, 1985. Accepted August 16, 1985. Research sponsored by the Office of Spent Fuel Management and Reprocessing Systems, U.S. Department of Energy, under Contract No. DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.